

5G EVE project: A European Platform for Extensive Trials – Progress and Latest Development

George Agapiou, Ph.D. OTE Labs Tilemachos Doukoglou, Ph.D. OTE Labs Velissarios Gezerlis, Ph.D. OTE Labs

OTE Laboratories for Technology Evaluation Fixed and Mobile

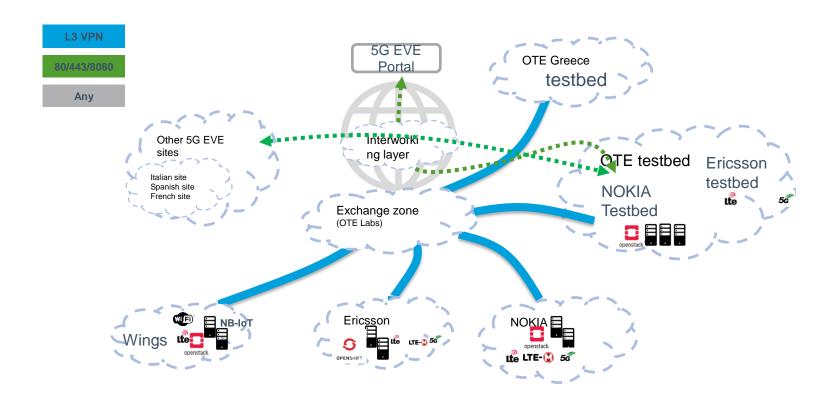
Outline

- 5G EVE
 - Motivation and objectives
 - Architecture
 - Site facility
 - Use Cases
- Conclusion

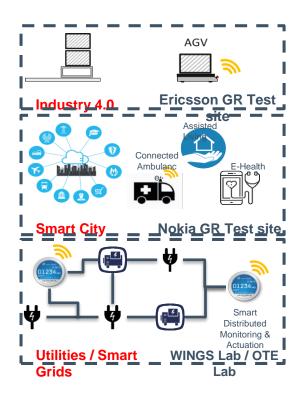
Motivation

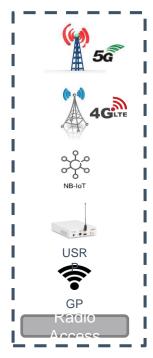
- Motivation
 - -Define the **architecture** to implement innovative vertical use cases.
 - -The proposed 5G EVE end to end facility will support the key 5G PPP network KPIs.

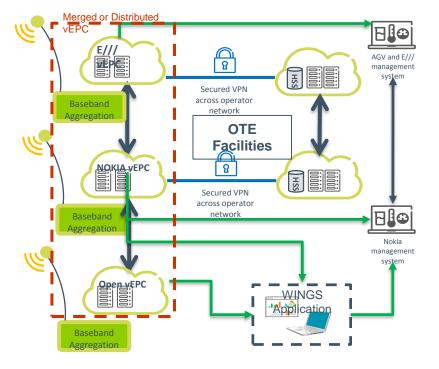
Location



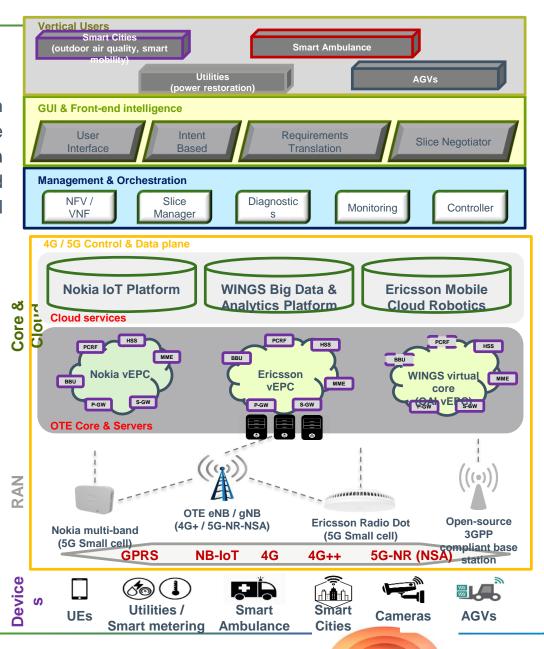
- The 5G EVE site facility is composed of a cluster of sites facilities in several countries
 - France 4 nodes: Nokia Paris Saclay,
 b<>com Rennes, Eurécom Nice, Orange
 Paris
 - Greece: Athens with Ericsson, Nokia, Wings, OTE
 - Spain: Madrid with Ericsson, Nokia, UC3M, TID, Telcaria,
 - Italia: Turin with Ericsson, Networks, A2T, CNIT, TIM, NXW


GREECE - Italy - Spain - French Site Facility Interconnection

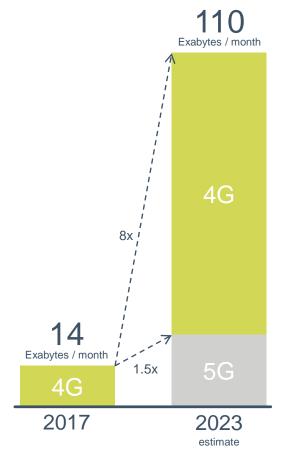




Current Testbed in Greek Site (Architecture)



Greek Site Architecture


- The Greek 5G EVE site facility covers a region of Northern Athens, around the R&D site of the Greek National Telecommunication Organization (OTE) that manages and orchestrates the verticals deployment as well as the KPI collection
- OTE, Ericsson GR, Nokia GR and WINGS are responsible to prepare and upgrade the Greek site facility to be able to handle three 5G-oriented vertical use cases
- The facility will be offered to vertical industries for execution and validation of pilots with full sets of 5G capabilities

Why 5G

Traffic Growth – Large number of connected devices on Network

Global mobile data traffic

8 x

Data traffic growth between 2017 and 2023

1 ms

Latency

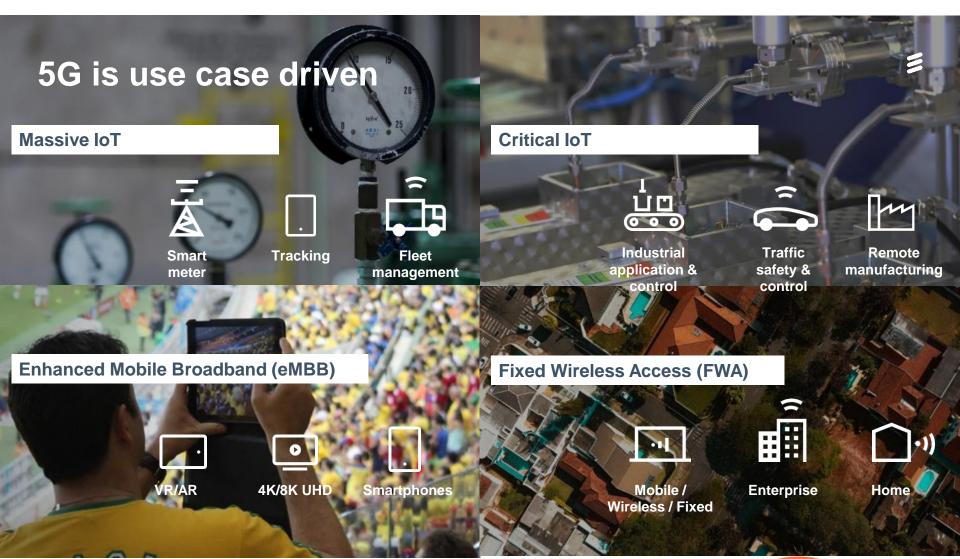
 $6.5M/km^2 x$

Device Connection

Density

515 kmph

Mobility


Why 5G

Why 5G

What to expect from 5G

Peak Data Rate 1 - 20 Gbps	Connecti 10k - 1M devices / hm²	Reliabi 99.999% (of packets)
User Experienc 10 -100 ed Data Mbps Rate	Networ k ×1 - x100 Efficie	Laten 1 - 10 ms
Spectr x1 - x3 Efficie	((IPI)) Area Traffic Capacit Mbps	Battery 10 years*
Mobil 350 - 500 km/h	Availab solution (of time)	Strong subscriber authentication, user privacy and network security

Source: ITU-R, NGMN, 3GPP

5G TECHNOLOGY

Radio Access network

- · Higher & bigger specturm bands
- More efficient bit/Mhz (10-50%)
- Low latency
- New technologies like Massive MiMo, Beamforming, spectrum sharing

Mobile Core network

- · Distributed cloud architecture
- · Network slicing
 - Automation

· Digital platform

OSS

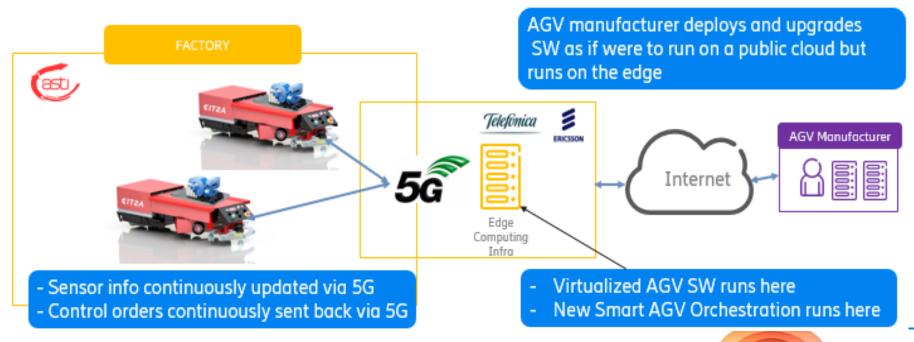
& BSS

- Artificial intelligence and analytics
 - Use case monetization

Devices

- Multiple devices
- Consumer
- Industries
- Utilities
- Automotive
- Manufacturing

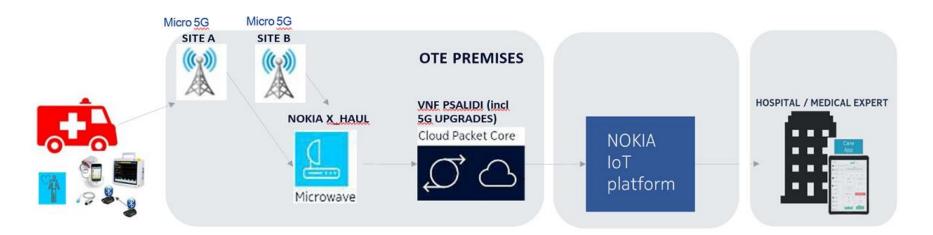
5G ENA ΔΙΚΤΥΟ- ΠΟΛΛΑΠΛΕΣ ΒΙΟΜΗΧΑΝΙΚΕΣ ΕΦΑΡΜΟΓΕΣ



Industry 4.0: Autonomous vehicles in manufacturing

Scenario 1: Cloud robotics use case: AGVs for warehouse logistics – Greece Site facility (Ericsson - Hellas)
In this Use case AVGs for warehouse logistics will be implemented in Greece site facility with the following main characteristics.

Mobile Cloud Robotics (MCR) in a Smart Wireless Logistic (SWL) facility has been identified as an exciting 5G opportunity that will be exploited by Ericsson and development partners.

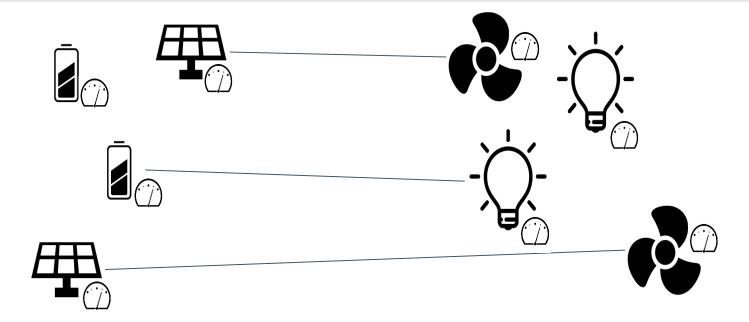

Smart cities: Safety and Environment

Scenario 2 - Connected Ambulance Greek Site Facility

The 5G "Connected Ambulance" concept will advance the **emergency ambulance services with their healthcare stakeholders** to help create improved experiences and outcomes for patients in their care.

Scenario 3 - Health Monitoring and Forecasting, Smart Mobility and Smart Home - Greek Site Facility

Western world population is ageing fast, supporting the automated indoor environment adaptation, the remote health monitoring and the smart mobility providing navigation instructions.



Utilities Smart Energy: Fault management for distributed electricity generation in smart grids

Scenario 1 - Fault management for distributed electricity generation in smart grids - Greek site facility (WINGS)
The use case considers the small/medium scale representation of distributed electricity generation in smart grids.
For that purpose, the use case will target as first step a demonstration mockup (small scale representation) with actual distributed energy generation and consumption points as well as smart meters

Greek Site Facility at OTE premises

- √ 1st release of AGV, Smart City and Utilities platforms available
- ✓ Vertical end devices available, Smart city sensors and actuators, AGVs, Smart energy distributed producers /consumers, sensors, etc.
- ✓ GUI development with Intent-based functionality to support vertical users
- √ Nokia and Ericsson vEPCs (1st release) installed at OTE facilities
- ✓ Ericsson Radio-Dot installed at OTE facilities
- ✓ Implementation of "Umbrella" Greek site Orchestrator under way
- ✓ Greek site facility was part of 5G EVE demo booth at EuCNC 2019 (runnerup award for best demonstration booth)

Conclusion

- The 5G-EVE testbed will be used for validation of the three Greek use cases.
- The use cases will be assessed based on their performance
- The Greek Site will be used to be interconnected to the other sites and run use cases from other domains

Thank you

Q & A

