

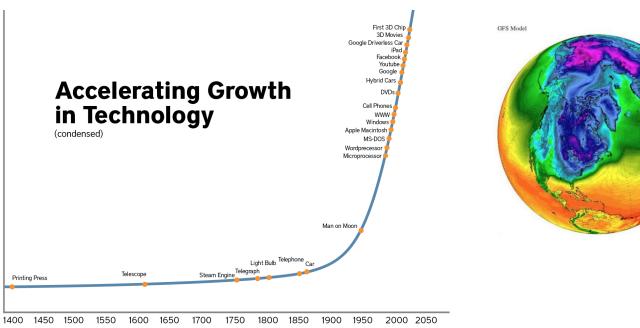
Industry4.0: Challenges & Business Opportunities

John Soldatos

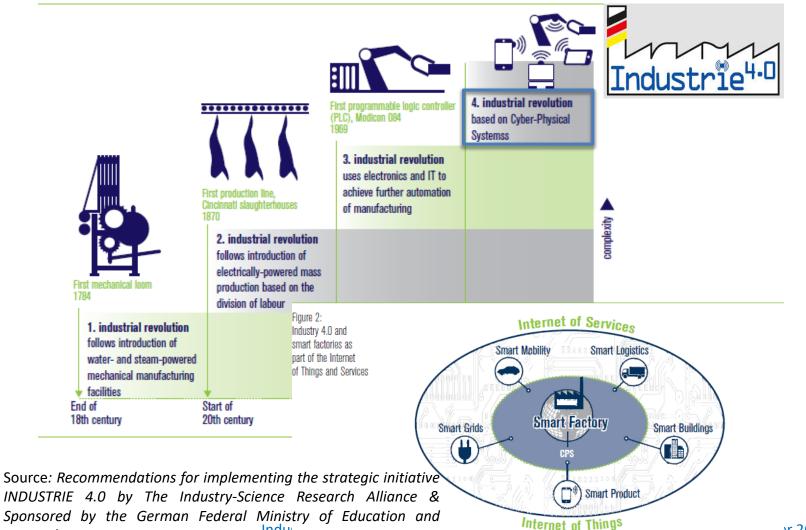
Head of IoT Group, Athens Information Technology

Honorary Research Fellow, University of Glasgow

E-mail: jsol@ait.gr john.soldatos@glasgow.ac.uk


LinkedIN: https://www.linkedin.com/in/johnsoldatos/

Major Trends of Our Time


- 1. Globalization
- 2. Technology Acceleration
- 3. Climate Change

Research

oT

Sensing of the physical world

Internet connectivity

Better term in terms of "Marketing"

CPS

Control of combined organizational and physical processes

Tight Human Machine Interaction

Used in Industry 4.0

er 26, 2019

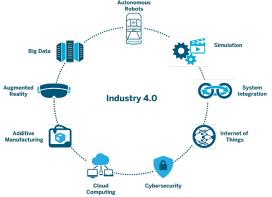
Industry4.0 Cyber Physical Systems and Smart Objects

Prominent examples of CPS:

- Adaptive Workbenches
- Smart Wearables
- Industrial Robots
- Autonomous Guided Vehicles
- Drones / Unmanned Aerial Vehicles

Use Cases:

- Predictive Maintenance
- Zero Defect Manufacturing
- Logistics & Supply Chain Automation
- Industrial Automation
- Worker Safety


Industry4.0 Derivatives: Healthcare 4.0

Healthcare 4.0:

- Transformation of healthcare based on interconnected cyber-physical systems
- Connected patients, institutions and other stakeholders through IoT/CPS devices including wearables
- Every data point of patients is getting recorded no matter where they are based on mobile technologies
- Combination of Artificial Intelligence, Internet of Things (IoT), Genomics and Big Data
- Revolutionizing prognosis, diagnosis, management and treatment of diseases regardless of time & location

Industry4.0 Derivatives: Finance 4.0

• Finance 4.0:

- Transformation of Digital Finance sector based on technologies like Robotics Process Automation (RPA), Artificial Intelligence (AI), and the internet of things (IoT)
- Several FinTech, InsurTech and RegTech innovations fall in the scope of this transformation
- From batch processing to real-time per transaction processing

Relevant Applications:

- Chatbots
- Robo-advisors
- Machine Learning and Deep Learning for risk assessment, fraud detection etc.

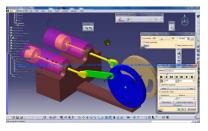
Main IoT Use Cases in Manufacturing & Industry

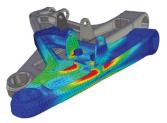
Flexibility in Automation

- Flexibly Configurable
 Production Lines
- Configuration at IT rather than OT (Operational Technology) timescales

Predictive Maintenance

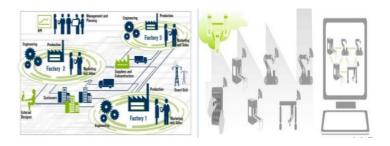
- Schedule Maintenance at the best point in time – Optimal Overall Equipment Efficiency (OEE)
- Reduce Unplanned
 Downtime Optimize OEE
 & Worker Safety

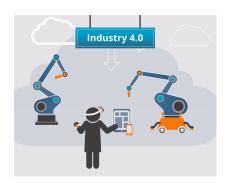



Zero Defect Manufacturing

- Collect data from the line and proactively mitigate any sources of defects
- Holistic approach to Zero
 Defects combining
 knowledge about the
 process, maintenance,
 supply chain management

Main IoT Use Cases in Manufacturing & Industry

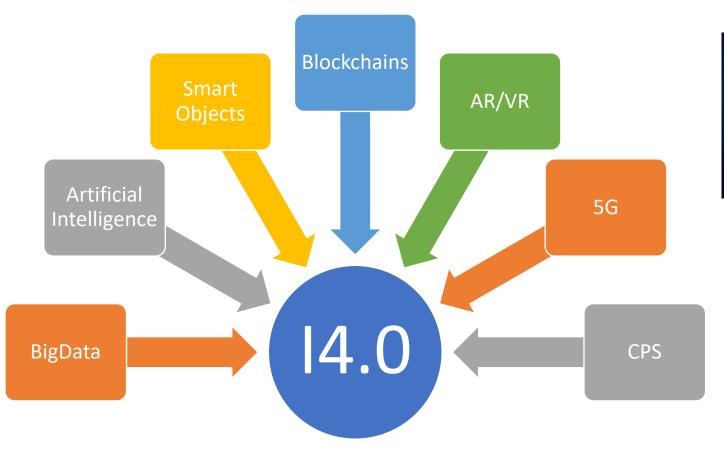



Digital Simulation & Digital Twins

- Simulate industrial process in terms of whatif scenarios using their digital (twin) model
- Optimize operations & decisions – Test without disrupting the production

Supply Chain Optimization

- Created Interconnected and Informed Plants
- Rapidly exchange timely & accurate information across all stakeholders



Worker Safety

- Interact with cyberrepresentations instead of with harsh environments
- Track workers' status with wearables and boost their collaboration

Industry 4.0: Digital Enablers

Prerequisites & Preparatory Steps

Cyber-Physical Systems

Enabling
Machinery for
14.0

Especially for legacy
Machines

Digital Skills

Strong digital team required

Workers, but also technical and R&D partners Testing Facilities

Lab or Pilot Line

Simulation & Testing Infrastructure

Strategy & Roadmap

Specification of Business goals

Use Cases to be implemented

Implementation Steps

Process Reengineering

• As-is → To-Be

Solution Architecture

 RAMI4.0, Industrial Internet Consortium RA, OpenFog RA

Digital Modeling

AutomationML, COLLADA, B2MML...

Field Connectivity

• OPC-UA, MQTT, DDS..

Data Analytics

 Data Mining & Machine Learning, Deep Neural Networks & Deep Learning

Cybersecurity

 Industrial Internet Security Framework, IT & OT Security Convergence

Pilot Testing & Deployment

Pilot Lines, Testbeds, Simulation...

Source: European Commission, Key lessons from national industry 4.0 policy initiatives in Europe

Policy Making Areas

R&D Investments

Close Collaboration between Academia & Industry

Life Long Learning

Boosting Innovation & Entrepreneurship

New Social Contracts

Five "Actionable" Proposals for Greece

Construct & Establish Big Data Databases

- Central Government: Healthcare, Finance,...
- Municipalities & Regions: Data Portals & Data Stores
- Businesses: Knowledge Bases

Digital Innovation Hubs

- Already Established, but more efforts is Required, including active engagement of Businesses
- Public-Private Partnerships

Create & Attract Talent

- Revised School & University Curricula
- Give Incentives to International Talent

Engage the Society

- Increase Awareness
- Lifelong Learning & New Social Contracts

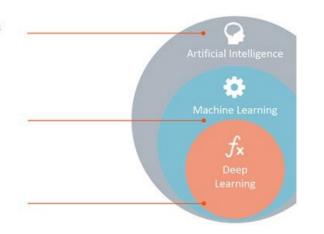
National Strategy for Al

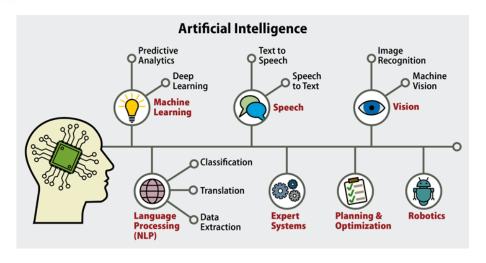
• Major Impact on Fiscal, Educational, Social, Healthcare etc. Policies

Artificial Intelligence

- Modelling intelligent behaviour with minimal human intervention
- Machines & computer programs become capable of problem solving and learning, like a human brain
- E.g., Natural Language Processing ("NLP") and translation, Pattern recognition, Visual perception and Decision making.
- Machine Learning ("ML"): Automatically make sense of data
- Al Programs:
 - Can retain information
 - Becomes smarter over time
 - Not susceptible to Sleep deprivation, distractions, information overload and short-term memory loss

Artificial Intelligence

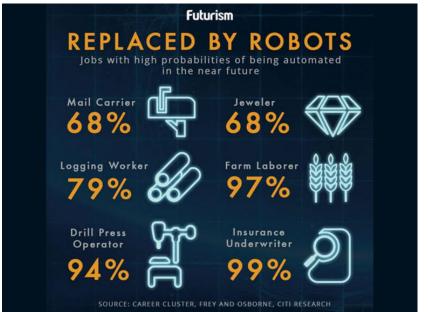

Any technique which enables computers to mimic human behavior.

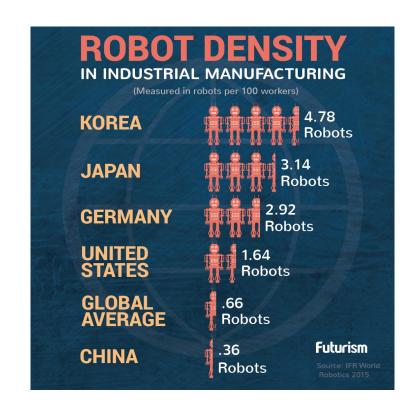

Machine Learning

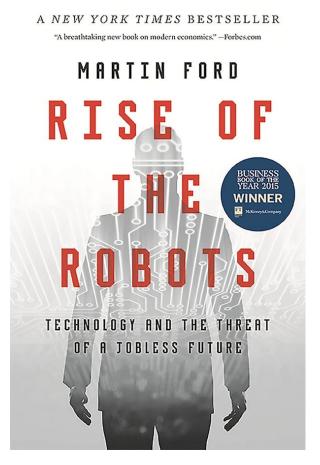
Subset of AI techniques which use statistical methods to enable machines to improve with experiences.

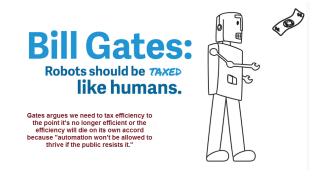
Deep Learning

Subset of ML which make the computation of multi-layer neural networks feasible.






Al replaces or leads to loss of Jobs



- Various reports with different methodologies & timeframes, for example:
 - 2018 report used a dataset compiled by the OECD projecting loss of up to 30% jobs in the UK- Looks in detail at the tasks involved in the jobs of over 200,000 workers across 29 countries.
 - Another OECD study, covering 32 countries, calculated that close to 50% of jobs is likely to be "significantly affected" by 'automation"
 - 2017 report examining the global labour market covering 46 countries and considering multiple factors: About half of all work activities globally have the technical potential to be 'automated' by 2030 through "robotics & AI in practice an average of 30% could be replaced
- There is evidence against an 'end of work' hypothesis:
 - Al is likely to resemble previous waves of change
 - Will change and create jobs, while rendering others obsolete.

New Policies and Social Contracts

- Digital Skills and Lifelong Learning:
 - Workers of the future must be equipped with the education and skills they will need be 'digital citizens'
 - Meeting the likely demand for re-training for displaced workers through new approaches to training and development; and
- Share the benefits of AI across communities, including by supporting economic growth
 - Taxing Robots?
 - Universal Basic Income?
- Deal with the implications of the nature of working life, for example with respect to income security and the gig economy
- Tackling potential biases from algorithmic systems at work

Education Policies for the era of Al & Automation

Education

- Driving Al adoption
- Combating inequality
- Equipping workers to be 'digital citizens'
- Training in skills to take on new jobs
- Developing the advanced specialists to work in the AI industry
- Creating a pool of informed users to engage with the specialists

Relevant Policies

- Teaching key concepts in AI and their ethical implications
- Ensuring access to a broad curriculum throughout compulsory education, giving all students the opportunity to study mathematics, physics, chemistry and computing, social sciences, creative arts, humanities and languages and developing skills such as communication, research, and independent thinking etc.
- Investing in higher education and research funding to increase numbers of AI specialists.
- Retraining for displaced groups and opportunities for lifelong learning.

Working life Policies for the era of Al & Automation

Reforms to social security to support low income workers (e.g., UBI)

Measures to address concerns over working conditions (wages, employment quality, education, training work life balance)

Working life Policies

Ways of managing bias in data, including technology-based solutions and new governance approaches.

Local Growth Policies for the era of Al & Automation

Local Growth Policies

- Advice and support to businesses of all sizes to use Al technologies (e.g., Network of Local Enterprise Partnerships and Growth Hubs).
- Using industrial strategy to drive AI adoption across sectors.
- Supporting local growth and economic development (e.g., skills developments at a local level).
- Business-university collaborations and talent sharing in AI

More Information

- AIT Web Page: www.ait.gr
- Follow on Twitter: @jsoldatos
- Connect at LinkedIN: https://gr.linkedin.com/in/johnsoldatos
- Articles / posts:

https://www.linkedin.com/in/johnsoldatos/detail/recent-activity/posts/

https://www.prometheusgroup.com/team/john-soldatos