

Slicing and Self-management of Future network resources for the support of concurrent vertical domain use cases

Prof. Nancy Alonistioti (Head of SCAN LAB)

email: nancy@di.uoa.gr

+302107275216

+302107275177

+306944341655

Our Profile and Focus

General Profile

- National & Kapodistrian University of Athens (UoA, <u>uoa.gr</u>) – the oldest and 1st ranking among all Greek Universities:
 - students: 105,000 people
 - academic stuff: 1,964 people
 - administrative stuff: 1,316 people
- Research and innovation group in Department of Informatics & Telecommunications (DIT, <u>di.uoa.gr</u>), Networks: Software Centric & Autonomic Networking Lab (SCAN, <u>scan.di.uoa.gr</u>)
 - 20 researchers, engineers and support personnel
 - More than 20 EU Funded Projects (since FP6)
 - SCAN-NKUA coordination (both PM and TM) in several of them
 - More than 10 Industry Contracts
 - Several patents filed in European/World Patent Office,
 - More than 500 publications,
 - More than 4000 citations,
 - Support of BSc/MSc/PhD dissertation thesis: ~15 per year.

Focus Areas

- Mobile/Wireless Communications (5G, LTE)
- MEC Cloud
- Internet of Things Smart Cities Connected Cars
- Software-Defined Networks (SDN) Network Function Virtualisation (NFV)
- Big Data (Data Analytics, Predictive Analytics, Data Economy)
- Future Internet (FI-WARE Advanced Apps and Services)

EU & Industry Projects

Patents from Industry Contracts related to Automotive domain

- WO2016184492A1: Method for efficient Location Management in Wireless Networks
 - Take advantage of forthcoming, automotive industry V2V killer-apps, such as *Car Platooning* in order to improve Location Management for 5G devices and minimize signaling burden

- WO2017137089A1: User equipment profiling for network administration
 - A context extraction and profiling engine based on advanced analytics, capable of 5G Connected Vehicle
 Profiling for traffic and mobility patters prediction and optimal network resource allocation
- WO2017211415A1: Context Information Processor, Profile Distribution Unit and Method for a Communication Network
 - A distributed network solution, which is able to operate on top of Connected Vehicles OBUs and preprocess the Vehicle Context Information towards efficient Vehicle Profiling

Open issues for slicing and management of concurrent vertical flows

- Agile management and configuration
- Orchestration of flow prioritization across vertical domains
- Multioperator multivendor harmonization
- SDN/SDR resource control at the edge
- Use cases: automotive, maritime

Scenarios and Architectures under consideration

CLC: Cross Layer Controller for 5G architecture based on SDN and SDR approaches for (massive) Internet of Things RANs and M2M

- Multi-layer, flexible, SDN-based network architecture: an elastic distributed controller architecture that allows different number and type of controllers
- Operates on top of both standard radio devices (e.g. Wi-Fi APs) as well as custom, programmable radio infrastructure (e.g., USRP-based LTE eNBs)
- Almost real-time policies and rules enforcement based on real-time monitoring of network and radio conditions
- Capable of applying E2E slicing for specific types of devices, traffic, etc.
- Evaluated in the context of Fed4Fire+ testbed

ScanNSM-IoT:

SCAN NS3/SDN-enabled & Massive IoT RAN Simulator Platform

- SDN and SDR based Cross Layer Controller for E2E slicing (CLC)
- Context Extraction and Profiling Engine for Internet of Things
- Ultra Dense Environment scenarios with coexisting WiFi and LTE access technologies
- Connected cars 5G use case evaluation using V2X (Vehicleto-Vehicle, Vehicle-to-Infrastructure, etc.) technologies
- Context-Aware UE-based Traffic Steering scheme

ScanNSM-IoT:

SCAN NS3/SDN-enabled & Massive IoT RAN Simulator Platform

- Platform developments:
 - SDN-enabled backhaul for Ultra Dense 5G deployments using OpenFlow-enabled EPC in NS-3
 - NB-IoT NS-3 module for Massive IoT RAN implementation
 - LoRaWAN NS-3 module
 - Low Power Wide Area Network (LPWAN) specification intended for wireless battery operated Things in a regional, national or global network.
 - LoRaWAN targets key requirements of IoT such as secure bi-directional communication, mobility and localization services
 - seamless interoperability among smart Things without the need of complex local installations operates in unlicensed radio spectrum (similarly with Wi-Fi)
 - uses lower radio frequencies with a longer range (EU 863-870 MHz, US 902-928 MHz, etc.)

CLC: enhance SDN/SDR integration and slicing in multioperator domains

- Orchestration policies for harmonized edge network resource slicing and operation
- Facilitate cross domain flow prioritization and control
- Enhanced capabilities for cross-operator end-to-end slicing
- Provision of SDR/SDN capabilities at the edge
- Enhanced MEC capabilities

Conclusions

- Multioperator end-to-end slicing for prioritized flows
- Intelligent orchestration for fixed/wireless resources
- Vertical cross-domain flow priority identification
- Cross-domain SDR/SDN resource allocation at the edge
- Enabler for new approaches for the support of dynamic radio/fixed resource allocation and slicing supporting finegrained QoS classes

Thank you!

