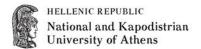
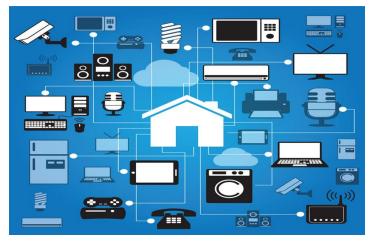


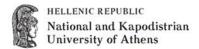
Spectrum Trading in Virtualized 5G Networks

Christos Tsirakis


Researcher, PhD candidate



State-of-the-Art

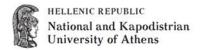

- Mobile technology offers ubiquitous communication
- Increasing mobile connections and data traffic
- Need for spectrum, but it is scarce!
 - > Inefficient spectrum management
 - > Static frequency allocation scheme
- Required network features
 - > Intelligence, efficiency, scalability
 - > Service quality and reliability guarantee

State-of-the-Art

- □ 5G Attribute: Spectrum Efficiency
- **□ 5G Functionality:** Wireless network virtualization
 - Physical resources (infrastructure, spectrum) are abstracted into virtual resources

□Business model of virtualized 5G network

Mobile Virtual Network Operators (MVNOs) dynamically lease and efficiently share the available resources owned by Mobile Network Operators (MNOs)


Advantages

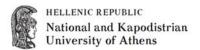
- > MNOs gain more revenues, reduced CAPEX / OPEX
- > MVNOs better serve on-demand their clients' different needs
- > Higher network performance with less spectrum underutilization



Research Challenge

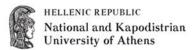
Spectrum trading market

- Assuming there is unutilized spectrum
- > MNOs offer it for sale
- > MVNOs are interested in buying
- Cooperation between MNOs and MVNOs

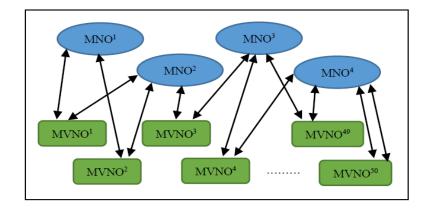

☐ The problem is that both have conflicting interests

- > MNOs: more revenues for certain bandwidth
- > MVNOs: more bandwidth for certain cost
- ☐ The research challenge is to create mutually beneficial relations between MNOs and MVNOs

Contribution



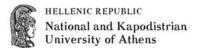
- ☐ We propose to model this spectrum trading problem as a Many-to-Many Matching (M2MM) game
 - > One MNO can form a partnership with multiple MVNOs and one MVNO can form a partnership with multiple MNOs, as well
- We propose the construction of specific utility functions for MNOs and MVNOs
 - > The value of each utility function sets the ordered preference list of one entity to the other



Contribution - Matching Model

Network model

- > 4 MNOs
- > 50 MVNOs


☐ How M2MM scheme with utility-based preferences works

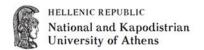
- > MNOs advertise bandwidth to sell and relevant price (supply)
- > MVNOs advertise required bandwidth and price willing to pay (demand)
- > Both sides construct their preference list based on their utility function
- > After applying an extension of the deferred acceptance algorithm, a stable matching between each MNO and MVNO is achieved

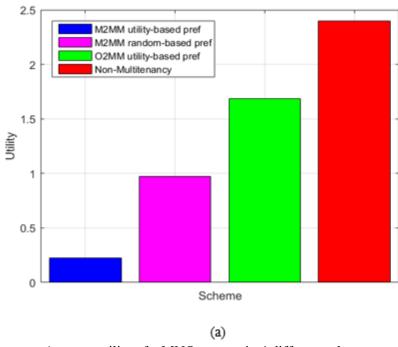
Contribution – Utility Functions

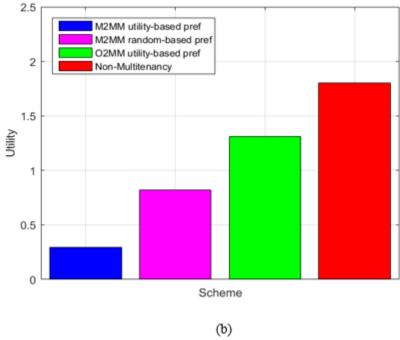
- □ Each utility function includes parameters that enable each entity to characterize the matching entity
 - > Bandwidth, price, reputation, QoS
- □ Each parameter has different weight or importance for each entity
 - > Thus, each entity builds its own strategy plan for the matching entity

$$\begin{aligned} W_{MNO} &= \left[W_{MVNO,BW} \;, W_{MVNO,PR} \;, \; W_{MVNO,REP} \right] \\ \\ W_{MVNO,BW} &+ W_{MVNO,PR} + W_{MVNO,REP} = 1 \end{aligned}$$

$$\begin{split} W_{MVNO} &= \left[W_{MNO,BW}\,, W_{MNO,PR}\,,\, W_{MNO,REP}\,,\, W_{MNO,QOS}\,\right] \\ \\ W_{MNO,BW} &+ W_{MNO,PR} + W_{MNO,REP} + \,W_{MNO,QOS} = 1 \end{split}$$

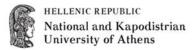

$$\begin{aligned} U_{MNO}(i,j) &= \left| W_{MVNO,BW} \left(5 + BW_{MVNO}(j) - BW_{MNO}(i) \right) \right. \\ &+ \left. W_{MVNO,PR} \left(5 + PR_{MVNO}(j) \right. \\ &- \left. PR_{MNO}(i) \right) + W_{MVNO,REP} \left. REP_{MVNO}(i,j) \right. \\ &- \left. U_{MNO} max \right| \end{aligned}$$


$$\begin{split} U_{MVNO}(j,i) &= \left| W_{MNO,BW} \left(5 + BW_{MNO}(i) - BW_{MVNO}(j) \right) \right. \\ &+ \left. W_{MNO,PR} \left(5 + PR_{MNO}(i) - PR_{MVNO}(j) \right) \right. \\ &+ \left. W_{MNO,REP} \left. REP_{MNO}(j,i) \right. \\ &+ \left. W_{MNO,OOS} \left. QOS_{MNO}(j,i) - U_{MVNO} max \right| \end{split}$$

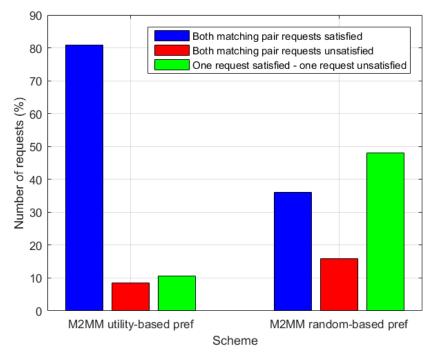


Results – Utility

Average utility of a MNO request in 4 different schemes



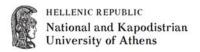
Average utility of a MVNO request in 4 different schemes



Results - Satisfaction

MNOs / MVNOs satisfaction over various conditions

	MNO > MVNO	MNO = MVNO	MNO < MVNO
Bandwidth	✓	✓	×
Price	*	✓	✓



Average number of satisfied or unsatisfied matching pair requests

Contacts & Social Media

Thank You!

ctsirakis@oteresearch.gr

twitter.com/christosts6

linkedin.com/in/christos-tsirakis

researchgate.net/profile/Christos_Tsirakis

