

5G ESSENCE Contributions to New Generation of In-Flight Entertainment and Communications (IFEC) Systems

InfoCom World 2018, Athens, Greece

Elisenda Temprado Garriga Zodiac Inflight Innovations <u>elisenda.temprado@zii.aero</u>

Olga E. Segou PhD (presenter) Orion Innovations PC <u>osegou@orioninnovations.gr</u>

Outline

- Overview of the 5G ESSENCE approach for future In-Flight Entertainment and Connectivity
- Planned Services & the 5G Ecosystem
- The way forward

Overview

- Objectives: Deploy, Validate and Demonstrate the 5G ESSENCE use case on IFEC systems, highlighting the capabilities of the 5G ESSENCE architecture to deliver multi-tenant, high-definition content onboard. 5G ESSENCE dedicates WP7 to IFEC innovations.
- Approach: Integrate the multi-tenant mobile connectivity payload with 5G/LTE and Multi-RAT Wi-Fi components and high-performance servers into a Cabin Mock-Up.

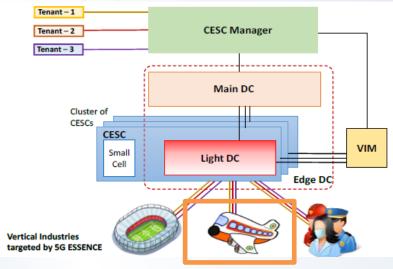


Figure 1: Architecture overview.

Figure 2: Cabin mock-up (ZII demonstration environment).

Planned Services & 5G Ecosystem(I) 👮 ^{5G}ESSENCE

Multi-tenancy

- RAN slicing (FBK)
- Wi-Fi slicing (i2CAT)

• Multi-RAT

- Wi-Fi APs (ZII)
- Small Cells (CASA): LTE/LAA
- Open source solutions: srsLTE + Ettus
- Video Transcoding (ITL)
- Caching (ORION)
- Telemetry (ATOS)
- Current aircraft provide a chain of Access Points serving multimedia content to a number of clients

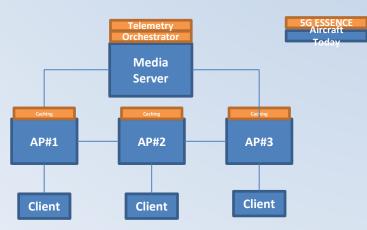


Figure 3: Transcoding service.

Figure 4: Current IFEC architecture.

Planned Services (II)

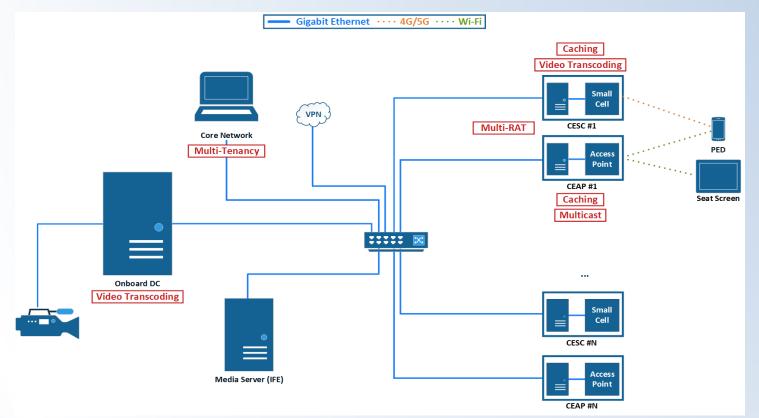
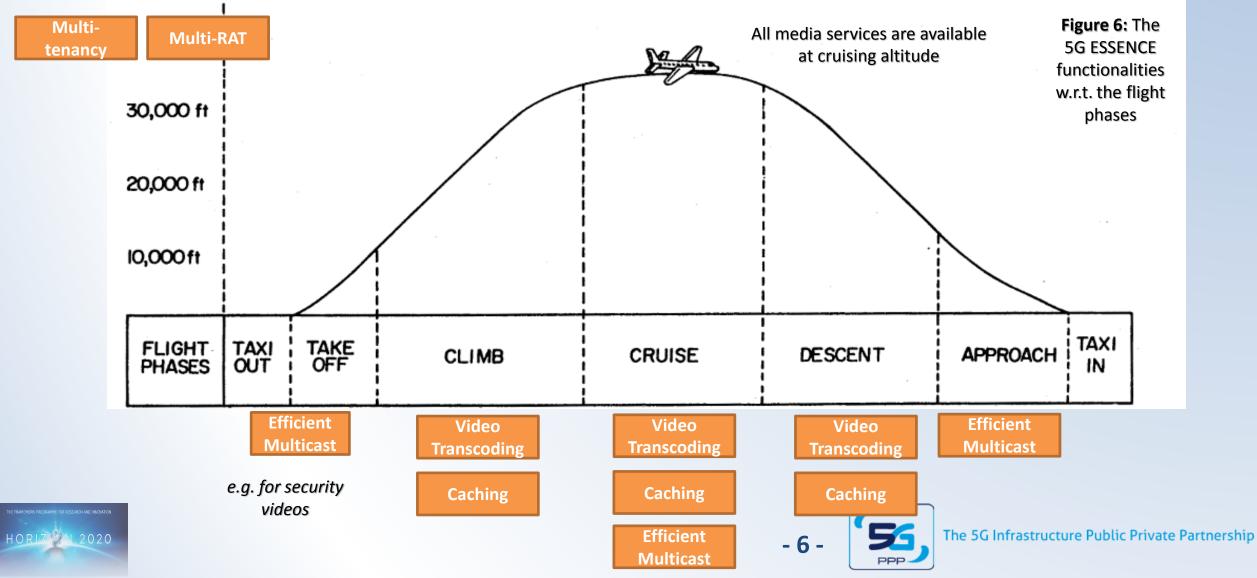
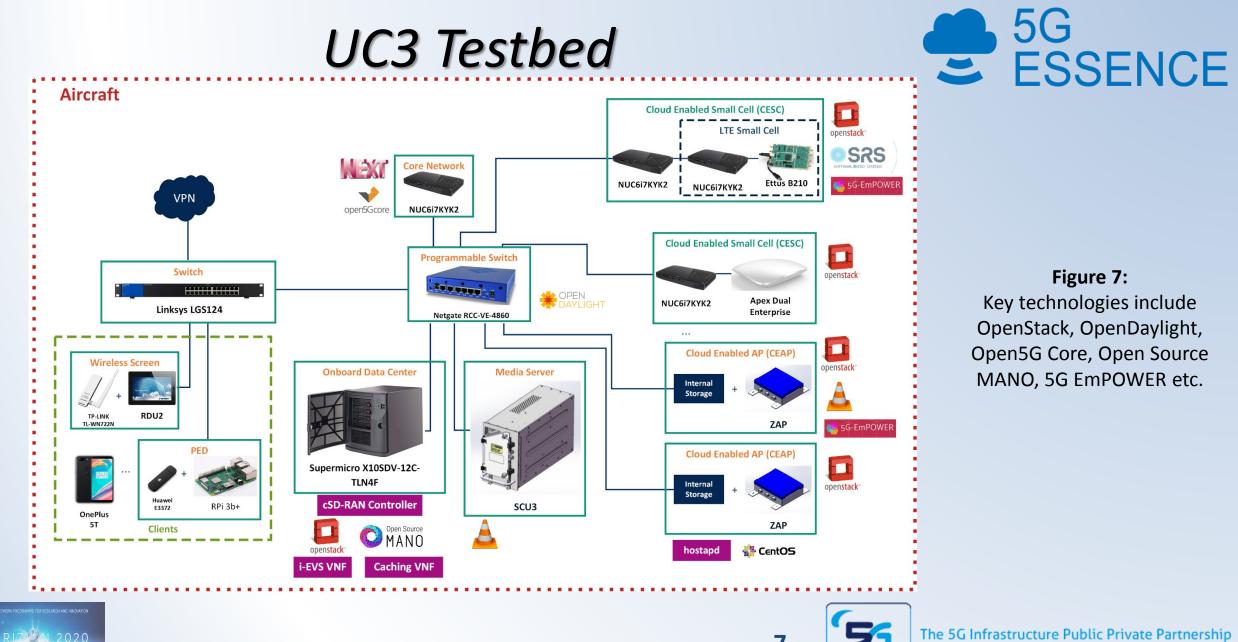


Figure 5: The 5G ESSENCE vision brings on-board small cells and cloud-enabled multimedia servers, rather than daisy-chained APs.





The 5G Infrastructure Public Private Partnership

Planned Services (III)

- 7 -

DDC

The 5G Infrastructure Public Private Partnership

The way forward

- To jointly deliver the required communication and network/cloud infrastructure for the wireless IFEC (to both the embedded IFE devices and the wireless BYOD).
- Effectively integrate and test E2E application scenarios.
- Functional testing of the Video encoding and Caching service will support a wide range of input file formats, allowing easy integration with existing production systems, and a comprehensive array of output formats.
- Output parameters will be configurable, enabling precise tuning for the desired output devices.
- CESCM will be elaborated for indoor dense deployment of small cells and limited processing power, due to the space and weight constraints imposed by the aeronautical industry.

Thank you for your attention *For more information please contact:*

Elisenda Temprado Garriga Zodiac Inflight Innovations elisenda.temprado@zii.aero

Olga E. Segou PhD (presenter) Orion Innovations PC

osegou@orioninnovations.gr

Validation Plan

- **Durability tests:** Run the service for 12h, 24h, 48h and monitor for faults
- Performance: Time to deploy, Time to configure, Mean Time to Failure, Latency measurements (if necessary), energy consumption
- Security and privacy: CVE tracking, hardening measures, privacy and data protection, use of encryption, assessment of overall attack surface and security risks associated with the service.
- Usability: Measure time to launch a service and configure it using a cognitive walkthrough scenario and/or heuristic evaluation

Integration & Testing plan

- Platform functional requirements:
 - Start and Stop a service
 - Scale in and out
 - Modifying a running service (autoscaling)
- Functional testing
 - Video Caching, Real Time Video Transcoding and streaming from an HM camera
- Testing the integration with other 5G ESSENCE components
 - SDN controller, MANO stack, VIM, Barometer/Prometheus etc.

Service deployment – Future steps

- Finish development of WP7 VNFs by December 2018
 - Create packages for OSM Rel 4
 - Test deployment in OSM
 - Test lifecycle management in OSM
- Align with use case architecture and 5G ESSENCE architecture
 - Testbed location
- Design full demo for the Use Case (output of T7.1)
- Deploy and test individual components and services
- Run end-to-end tests and scenarios (output of T7.3)

RT Video Transcoding (ITALTEL)

- The VNF named i-EVS has been tested in Italtel Lab.
- i-EVS is able to perform Real Time Transcoding of Video streams (with or without GPU) with the possibility to store files and to add augmented reality information.
- An Android App has been developed to take advantage of i-EVS services on mobile terminals.
- EVS is a VNF composed by 3 VNFC: database, storage and transcoding engine.
- It has been originally developed with OpenBaton as orchestrator but following 5G Essence requirements, we generated VNFD and NSD in order to use OSM (rel.3).

Video Caching (ORION)

- VNF prototype is based on VideoCache (Squid URL rewriter plugin).
- Testing is performed using the the Plex media server.
- Once testing is done, packaging for OSM Release FOUR is expected.
- Development and testing is performed in Orion's testbed, equipped with OSM (Rel 2), OpenStack Ocata and OpenDayLight Carbon.
- The VNF will be deployed at ZII's testbed for testing with RAVE.

Service deployment – Current Status 쿶 ^{5G} ESSENCE

- ITALTEL VNF is packaged for OpenBaton or OSM rel.3
- Orion's VNF will be deployed with OSM on Orion's testbed (KMV/CentOS based VNF on an OpenStack/OSM/ODL environment)
- WP7 will consider the possibility of using OSM Release FOUR for future deployments
- Orion intends to test OSM Release FOUR & integrate VIM monitoring (Ceilometer & Aodh)

